
Preliminary Design Configuration & Architecture

All code will be hosted within our GitHub organization (​https://github.com/MLApx/​) in

the “Main” repository. Whole-slide images with unique anonymized IDs will be hosted on

Amazon Web Service’s S3 storage cloud. We will use AWS Sagemaker for our cloud instances

and all other computational resources, which provides access to customizable GPU, CPU, and

memory requirements. Sagemaker instances will be connected to our GitHub repository for code

and S3 directories for images to ensure seamless integration and runtime. Below is a figure

illustrating the filesystem architecture we use and how information flows through our model. The

red lines illustrate how data flows through the system and which programs are used. The black

lines indicate directory hierarchy within our GitHub repository.

Figure 1: Shows GitHub directory structure and origin and destinations of data.

When examining the system from a functional perspective, we see we can organize the

sequence of operations into four primary modules.

1. Image preprocessing

2. Image processing

3. Feature processing

4. Machine learning

https://github.com/MLApx/Main

Figure 2: The illustration above details the separate functional components of the system and which Python

packages are used in each step. For a full resolution look, see Appendix I.

Below, we will provide an in-depth explanation of each module.

Module 1: Image preprocessing
The preprocessing module starts when the original images (whole-slide .tiff files) are

read in from AWS S3 storage into the image pre-processing subcomponent. The package

“Openslide” (a C library with a Python API that allows users to read WSIs) is used to separate

whole-slide images into a grid of RGB-formatted static (e.g. jpeg) images so that each image

represents a smaller surface area of the tissue and is the correct resolution to feed into the image

processing algorithms. The next step involves utilizing a package called “DeepAugment” to

perform data augmentation on the images. This involves manipulating pixel information to

produce rotations, inversions, and color distortions so the machine learning model is able to

operate over a wider range of stain and imaging conditions. The next step in the preprocessing

stage is to ensure colors, resolution, and other metrics are normalized within predetermined

ranges that match real-world conditions. This normalization step will occur in the same program

as the static image configuration and data augmentation, but in a separate function. Throughout

this entire process, a data structure of our static image database stores all individual images in

separate addresses to ensure all sub-functions can perform their relevant operations on each

image. This database also stores the geographical relationship of each static image and the

correct subtype classification.

Module 2: Image processing (i.e. feature extraction)

After the image preprocessing stage is complete, the ​image processing (feature

extraction) program​ begins. Using the same database of static images that have now been

augmented and normalized, sub-functions within the image processing program begin extracting

features and storing them in separate tables with key-value pairs to ensure correspondence with

the original static image. The first component of this stage is low-level feature extraction, which

uses gradient descent, recursive partitioning, and other methods to extract features such as lines,

curves, and contrast regions. The pixel coordinates of these features are stored in tables using

vectors.

This information is passed along to the mid-level feature extraction stage (a separate

function within the same program). Here, the Scikit and OpenCV libraries are used alongside

AWS’s ​semantic segmentation​ and ​object detection​ algorithms to determine the locations of

shapes and objects. At this point, features such as mucin pools and cell membranes have been

differentiated and their coordinate ranges stored in the data structure.

This data structure is then passed along to the high-level feature extraction algorithm,

which uses Scikit along with AWS’s built-in ​object classification​ and pre-trained ResNet

architecture to identify high-order features like signet ring cells, tumors, and layers of tissue.

These features are stored in a table of coordinate maps which are then sent to the feature

processing stage to be scaled into a DataFrame.

Module 3: Feature processing

The next stage is feature processing, which involves taking the output from the image

processing stage and fitting them into a properly scaled object called a DataFrame. This ensures

a seamless tracking of all extracted feature objects so they can be quantified, scaled, and fed into

the ML subtype classification algorithm. The Python package Pandas is used to convert the

high-level extracted features into a DataFrame and SciKit-Learn’s StandardScaler module is then

used to scale (i.e. normalize) the data to ensure proper reading by the machine learning model. It

is important to note that DataFrames are highly useful and manipulatable. Many machine

learning algorithms and data visualization packages operate smoothly on DataFrames. Therefore,

the team can perform many more functions on the extracted data such as visualization. After a

https://github.com/MLApx/Main/tree/main/Image%20Processing
https://github.com/MLApx/Main/tree/main/Image%20Processing
https://docs.aws.amazon.com/sagemaker/latest/dg/semantic-segmentation.html
https://docs.aws.amazon.com/sagemaker/latest/dg/object-detection.html
https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html

DataFrame is developed, image attributes such as “quantity of signet ring cells” and “surface

area of mucin pools” can be calculated and passed along for predictive modeling.

Module 4: Machine learning

The DataFrame is passed from the feature processing module as input data into the

Machine Learning ​model. Each column of the DataFrame would be selected as input for the

model and each row acts as one image or “entry”. The output would be a number representing

the probability of a given subtype (during the training stage, the correct subtype output is set to 1

which represents 100 percent probability, and all other subtypes are set to zero). The model will

be developed in the AWS SageMaker environment and deployed into production on a cloud

server for ease of use. The specific machine learning method to be deployed will be determined

by testing various architectures (KNN, SVM, etc.) in parallel and determining which yields the

greatest accuracy.

SK-Learn is a python library built for rapid development and testing of different models.

It includes all the major models for classification tasks such as K-Nearest Neighbour, Naive

Bayes, Decision Tree, and Support Vector machine. The library is so comprehensive that it

includes pre-built models that can be easily adjusted without editing a significant amount of

code. This will allow us to focus on tuning the models and perform rapid adjustments to create

the most accurate architecture possible. The library also has built in functions to visualize and

compare performance between models.

Appendix I - System Architecture

https://github.com/MLApx/Main/tree/main/Machine%20Learning

Feature Processing
im

age preprocessing

Im
age Input

(AW
S S3)

M
achine

learning
C

ancerous
Tissue

Package

O
penslide

Pre-trained m
achine

learning m
odel (K

m
eans, logistic

regression, etc.)

N
eural netw

ork
im

plem
ented by

transfer learning
(U

net, AlexN
et, etc.)

Package

D
eepAugm

ent

H
ealthy

Tissue

Subtype 1

Subtype 2

Subtype 3

AW
S Sagem

aker

Built-in pretrained
m

achine learning &
im

age classification
packages

Stain
norm

alization

D
ata

augm
entation

Package

Scikit-Im
age

Package

Im
age M

odule -
Pillow

Im
age Processing

Low
-level

feature
extraction

M
id-level

feature
extraction

H
igh-level
feature

extraction

Feature
scaling

D
evelop

D
ataFram

es

Package

Pandas

Package
SKLearn
Standard

Scaler

