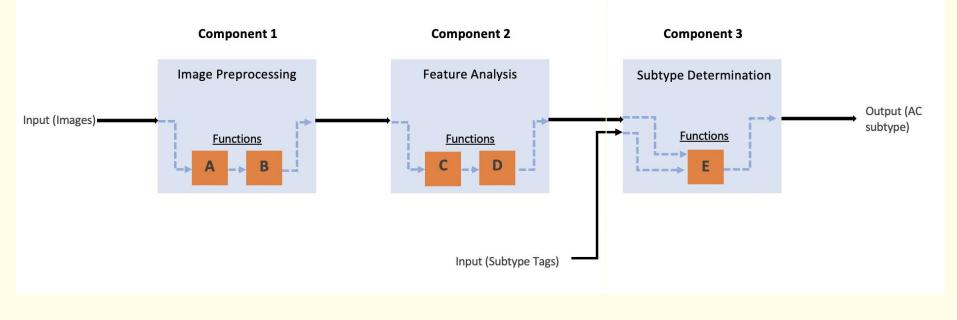
Preliminary Design Review Presentation

Machine Learning Algorithm for the Classification of Appendiceal Cancer


Capstone Fall 2020

- Updated system requirements to reflect functions that are independent of the solutions generated
- Explored other solutions in addition to the deep learning algorithm
- Researched image processing and augmentation software such as MATLAB, QuPath, and Visiopharm and specific capabilities of each.
- Developed an general overview of 2 possible solutions
- Discussed pros vs cons of each solution against a criteria
- Identified some key features of the subtypes

A. Read pixel information into data structures
B. Modify the images to account for real-world differences in H/E stained slides
C. Down sample pixel-level data until only desirable features are represented
D. Categorize features based on similarity and diagnostic relevance.

Component 1 (Image Preprocessing)

Component 2 (Feature Analysis)

Slide Analysis Application (QuPath)

MATLAB Image Processing Toolbox

Open-source Data Augmentation Packages MATLAB Image Processing Toolbox

Convolutional Network

Component 3 (Subtype Determination)

Machine Learning

Statistical Analysis

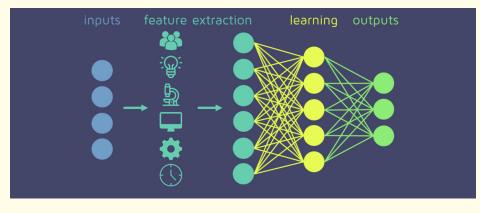
Concept Generation Solution A: Image Processing Model + Machine Learning Algorithm

Component 1 (Image Preprocessing)

Slide Analysis Application (QuPath)

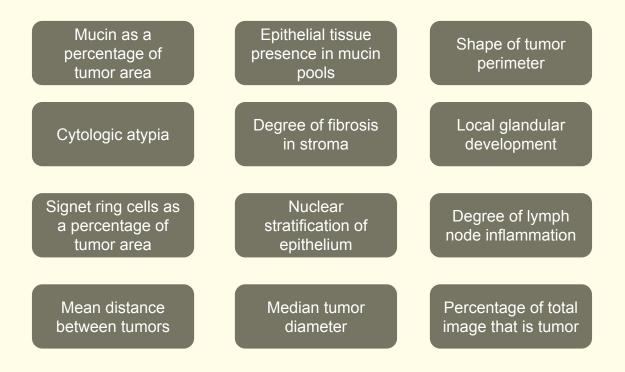
MATLAB Image Processing Toolbox

Open-source Data Augmentation Packages Component 2 (Feature Analysis)

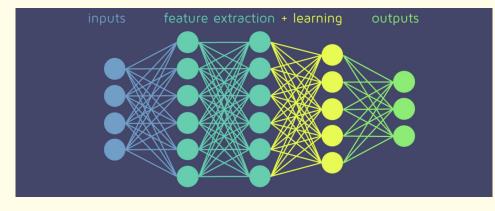

MATLAB Image Processing Toolbox

Convolutional Network

Component 3 (Subtype Determination)

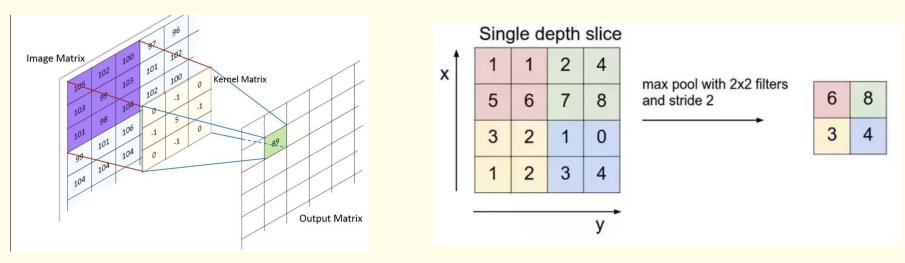

Machine Learning

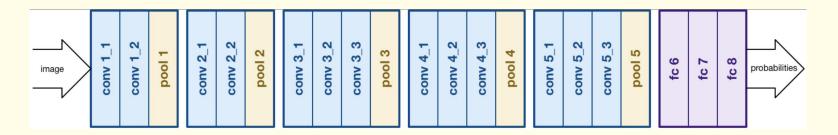
Statistical Analysis


Solution A: Features Image Processing Model will
Extract

Concept Generation Solution B: CNN Feature Extraction

Component 1 (Image Preprocessing)	Component 2 (Feature Analysis)	Component 3 (Subtype Determination)		
Slide Analysis Application (QuPath)MATLAB Image Processing ToolboxOpen-source Data Augmentation Packages	MATLAB Image Processing Toolbox Convolutional Network	Machine Learning Statistical Analysis		
Augmentation 1 ackages				



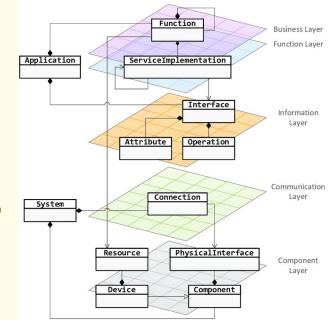

Concept Generation Solution B: CNN Feature Extraction

Convolution:

- Various combinations of these layers are used in sequence depending on problem
- Convolutional filters extract low, medium, and high-level features

- Solution A: Image Processing Algorithm + machine learning
 - Requires fewer images.
 - More control over extracted features.
 - Inherits problems from the Pathologist's approach.
 - Allows flexibility for additional stains to be added in the future

• Solution B: CNN


- Better performance given large training set.
- Discovers and extracts its own features.
- Requires 10,000+ images.

	Amount of Images	Timeline	Accuracy	Accessibility and Price	Ease of Development	Future Development	Total
Criteria Weight	5	4	6	3	3	3	
Solution A MATLAB image processing + machine learning	7	7	7	7	6	7	165
Solution B Deep learning (CNN)	5	5	9	6	7	6	156

- Final Concept Selection
 - Choose either Solution A or Solution B
- Iterate on System Architecture Diagram
 - Include more detailed information regarding the specific techniques we will implement to perform preprocessing, feature extraction, etc.
- Training, developing, and debugging software solution
- Function, Fit, Form, & Finish
- Create artifacts to communicate pieces of the program
 - Pseudocode, flow charts, use cases, Unified Modeling Language (UML), class diagrams, risk assessments, source code

Questions

- What are your thoughts on the system architectures of our solutions?
- Are there other system architectures, tools, or platforms we haven't considered?